Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
2.
Water ; 14(3):417, 2022.
Article in English | ProQuest Central | ID: covidwho-1687080

ABSTRACT

The occurrence of psychopharmaceuticals in aquatic ecosystems is a growing problem. Fluoxetine (FL) and its metabolite norfluoxetine (NF) are selective serotonin reuptake inhibitors. Although they may be potentially harmful to non-target species, available knowledge on the effects of NF is sparse, relative to FL. This study aimed at contributing to the body of knowledge about the modes-of-action (MoA) of these compounds and their underlying mechanisms eliciting hazardous effects during the early development of the teleost model zebrafish (Danio rerio). One hour post-fertilisation (hpf), embryos were exposed up to 80 hpf to these compounds at levels found in surface waters and higher (FL, 0.0015 and 0.05 µM;NF, 0.00006 and 0.0014 µM). Developmental anomalies were observed at 8, 32 and 80 hpf. Larvae were collected at 80 hpf to assess the expression of 34 genes related to FL and NF MoA and metabolism, using qPCR (quantitative reverse transcription PCR). Results showed that both compounds elicited an increased frequency of embryos exhibiting abnormal pigmentation, relative to controls. Gene expression alterations were more pronounced in FL- than in NF-exposed larvae. Cluster Analysis revealed two groups of genes discriminating between the drugs. for their marked opposing responses. Globally, downregulation of gene expression was typical of FL, whilst upregulation or no alteration was found for NF. These clusters identified were linked to the adrenergic pathway and to the retinoid and peroxisome proliferator-activated nuclear receptors. Overall, our data contradict the prevailing notion that NF is more toxic than FL and unveiled the expression levels of genes drd2b, 5-ht2c and abcc2 as possible markers of exposure to FL.

3.
Essays Biochem ; 65(6): 847-856, 2021 12 17.
Article in English | MEDLINE | ID: covidwho-1537347

ABSTRACT

Nuclear receptors are classically defined as ligand-activated transcription factors that regulate key functions in reproduction, development, and physiology. Humans have 48 nuclear receptors, which when dysregulated are often linked to diseases. Because most nuclear receptors can be selectively activated or inactivated by small molecules, they are prominent therapeutic targets. The basic understanding of this family of transcription factors was accelerated in the 1980s upon the cloning of the first hormone receptors. During the next 20 years, a deep understanding of hormone signaling was achieved that has translated to numerous clinical applications, such as the development of standard-of-care endocrine therapies for hormonally driven breast and prostate cancers. A 2004 issue of this journal reviewed progress on elucidating the structures of nuclear receptors and their mechanisms of action. In the current issue, we focus on the broad application of new knowledge in this field for therapy across diverse disease states including cancer, cardiovascular disease, various inflammatory diseases, the aging brain, and COVID-19.


Subject(s)
Receptors, Cytoplasmic and Nuclear/pharmacology , Receptors, Cytoplasmic and Nuclear/therapeutic use , Animals , Cardiovascular Diseases/drug therapy , Female , Humans , Inflammation/drug therapy , Male , Neoplasms/drug therapy , Receptors, Cytoplasmic and Nuclear/metabolism , SARS-CoV-2 , Signal Transduction , Transcription Factors/metabolism , COVID-19 Drug Treatment
4.
Essays Biochem ; 65(6): 1025-1038, 2021 12 17.
Article in English | MEDLINE | ID: covidwho-1334002

ABSTRACT

COVID-19 symptoms and mortality are largely due to its devastating effects in the lungs. The disease is caused by the SARS (Severe Acute Respiratory Syndrome)-CoV-2 coronavirus, which requires host cell proteins such as ACE2 (angiotensin-converting enzyme 2) and TMPRSS2 (transmembrane serine protease 2) for infection of lung epithelia. The expression and function of the steroid hormone receptor family is important in many aspects that impact on COVID-19 effects in the lung - notably lung development and function, the immune system, and expression of TMPRSS2 and ACE2. This review provides a brief summary of current knowledge on the roles of the steroid hormone receptors [androgen receptor (AR), glucocorticoid receptor (GR), progesterone receptor (PR), mineralocorticoid receptor (MR) and oestrogen receptor (ER)] in the lung, their effects on host cell proteins that facilitate SARS-CoV-2 uptake, and provides a snapshot of current clinical trials investigating the use of steroid receptor (SR) ligands to treat COVID-19.


Subject(s)
COVID-19/metabolism , Lung/metabolism , Lung/virology , Receptors, Steroid/metabolism , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/virology , Female , Hormone Antagonists/therapeutic use , Humans , Immunomodulation , Male , Receptors, Androgen/metabolism , Receptors, Estrogen/metabolism , Receptors, Glucocorticoid/metabolism , Receptors, Mineralocorticoid/metabolism , Receptors, Progesterone/metabolism , SARS-CoV-2 , Serine Endopeptidases/metabolism , Sex Factors , COVID-19 Drug Treatment
5.
Cells ; 10(3)2021 03 05.
Article in English | MEDLINE | ID: covidwho-1129686

ABSTRACT

The superfamily of nuclear receptors (NRs), composed of ligand-activated transcription factors, is responsible for gene expression as a reaction to physiological and environmental changes. Transcriptional machinery may require phase separation to fulfil its role. Although NRs have a similar canonical structure, their C-terminal domains (F domains) are considered the least conserved and known regions. This article focuses on the peculiar molecular properties of the intrinsically disordered F domain of the ecdysteroid receptor from the Aedes aegypti mosquito (AaFEcR), the vector of the world's most devastating human diseases such as dengue and Zika. The His-Pro-rich segment of AaFEcR was recently shown to form the unique poly-proline helix II (PPII) in the presence of Cu2+. Here, using widefield microscopy of fluorescently labeled AaFEcR, Zn2+- and Cu2+-induced liquid-liquid phase separation (LLPS) was observed for the first time for the members of NRs. The perspectives of this finding on future research on the F domain are discussed, especially in relation to other NR members.


Subject(s)
Ions/metabolism , Mosquito Vectors/pathogenicity , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Steroid/metabolism , Aedes , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL